首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1897篇
  免费   31篇
  国内免费   147篇
电工技术   11篇
综合类   51篇
化学工业   433篇
金属工艺   308篇
机械仪表   93篇
建筑科学   181篇
矿业工程   48篇
能源动力   46篇
轻工业   85篇
水利工程   5篇
石油天然气   13篇
武器工业   4篇
无线电   43篇
一般工业技术   611篇
冶金工业   115篇
原子能技术   16篇
自动化技术   12篇
  2024年   1篇
  2023年   23篇
  2022年   46篇
  2021年   68篇
  2020年   56篇
  2019年   64篇
  2018年   46篇
  2017年   63篇
  2016年   59篇
  2015年   63篇
  2014年   138篇
  2013年   176篇
  2012年   79篇
  2011年   152篇
  2010年   108篇
  2009年   109篇
  2008年   120篇
  2007年   107篇
  2006年   105篇
  2005年   69篇
  2004年   72篇
  2003年   71篇
  2002年   50篇
  2001年   35篇
  2000年   28篇
  1999年   33篇
  1998年   42篇
  1997年   22篇
  1996年   16篇
  1995年   12篇
  1994年   16篇
  1993年   7篇
  1992年   4篇
  1991年   3篇
  1990年   4篇
  1989年   1篇
  1988年   2篇
  1986年   3篇
  1984年   1篇
  1982年   1篇
排序方式: 共有2075条查询结果,搜索用时 15 毫秒
51.
This paper presents a novel analytical solution for geotextile-wrapped soil based on a comprehensive numerical analysis conducted using the discrete element method (DEM). By examining the soil–geotextile interface friction, principal stress distribution, and stress–strain relations of the constituent soil and geotextile in the DEM analysis, a complete picture of the mechanical characterization of geotextile-wrapped soil under uniaxial compression is first provided. With these new insights, key assumptions are verified and developed for the proposed analytical solution. In the DEM analysis, a near-failure state line that predicts stress ratios relative to the maximums at failure with respect to deviatoric strain is uniquely identified; dilation rates are found to be related to stress ratios via a single linear correlation regardless of the tensile stiffness of the geotextile. From these new findings, the assumptions on the stress-state evolution and the stress–dilatancy relation are developed accordingly, and the wrapped granular soil can therefore be modeled as a Mohr–Coulomb elastoplastic solid with evolving stress ratio and dilation rate. The development of the proposed analytical model also demonstrates an innovative approach to take advantage of multiscale insights for the analytical modeling of complex geomaterials. The analytical model is validated with the DEM simulation results of geotextile-wrapped soil under uniaxial compression, considering a wide range of geotextile tensile stiffnesses. To further examine the predictive capacity of the analytical model, the stress–strain response under triaxial compression conditions is solved analytically, taking both different confining pressures and geotextile tensile stiffnesses into account. Good agreement is obtained between the analytical and DEM solutions, which suggests that the key assumptions developed in the uniaxial compression conditions also remain valid for triaxial compression conditions.  相似文献   
52.
Abstract

The microstructure and mechanical properties of hot rolled Fe–40 at-%Al based intermetallic alloys, with 0·1 at-%Zr and different additions of B (varying from 0·01 to 0·1 at-%), are characterised. The additions of Zr and B improve tensile properties at room and elevated temperatures. Increasing B content is also associated with a number of other effects. First, the fracture mode changes from intergranular decohesion to cleavage, which correlates with significant increases in the fracture toughness. Second, there is a certain stabilisation of dislocations arranged in parallel systems of slip bands, as shown by transmission electron microscopy. Numerous complex stacking faults on {100} planes are also observed in the alloy with the highest B content. Third, B is found to modify the formation of second phase particles; such particles (coarse and fine) are analysed by energy dispersive X-ray spectroscopy and electron energy loss spectrometry to obtain compositional information.  相似文献   
53.
《Ceramics International》2021,47(19):27217-27229
Herein, an in-depth analysis of the effect of heat treatment at temperatures between 900 and 1500 °C under an Ar atmosphere on the structure as well as strength of Cansas-II SiC fibres was presented. The untreated fibres are composed of β-SiC grains, free carbon layers, as well as a small amount of an amorphous SiCxOy phase. As the heat-treatment temperature was increased to 1400 °C, a significant growth of the β-SiC grains and free carbon layers occurred along with the decomposition of the SiCxOy phase. Moreover, owing to the decomposition of the SiCxOy phase, some nanopores formed on the fibre surface upon heating at 1500 °C. The mean strength of the Cansas-II fibres decreased progressively from 2.78 to 1.20 GPa with an increase in the heat-treatment temperature. The degradation of the fibre strength can be attributed to the growth of critical defects, β-SiC grains, as well as the residual tensile stress.  相似文献   
54.
《Ceramics International》2016,42(8):9557-9564
In this work the influence of the processing routes on the microstructure and properties of Ti3SiC2-based composites was investigated. The three main processing steps are (i) three-dimensional printing of Ti3SiC2 powder blended with dextrin, (ii) pressing of printed samples (uniaxial or cold isostatic pressing), and (iii) sintering of pressed samples at 1600 °C for 2 h. The Ti3SiC2-based composites were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). Young's Modulus and flexural strength were measured to examine the mechanical properties. Porosity, density, shrinkage, and mass change were measured at each processing step. Those samples uniaxially pressed at 726 MPa presented the highest density, shrinkage, and mass change. However, microstructural morphologies were crack-free and homogeneous for cold isostatic pressed Ti3SiC2-based composites as compared to uniaxially pressed samples. The highest values for Young's Modulus (~300 GPa) and flexural strength (~3 GPa) were observed with uniaxially pressed Ti3SiC2-based composites.  相似文献   
55.
《Ceramics International》2016,42(6):6850-6857
The fatigue behavior of plain-weave Cf/C–SiC composites prepared by liquid silicon infiltration (LSI) was studied under cyclic tensile stress at room temperature. The specimens were loaded with stress levels of 83% and 90% of the mean static tensile strength for 105 cycles. The cross-sections and fracture surfaces of the fatigued specimens were examined by optical microscopy (OM) and scanning electron microscopy (SEM), respectively. The results show that the specimens can withstand 105 fatigue cycles with a stress level of 90% of the static tensile strength. The retained strengths after fatigue for 105 cycles with stress levels of 83% and 90% are about 19% and 11% higher than the static tensile strength. Due to the observation of the microstructures a relief of the thermal residual stress (TRS) caused by stress-induced cracking is probably responsible for the enhancement. Furthermore, the fracture surfaces indicate that the fatigue stress results in interfacial debonding between the carbon fiber and matrix. Additionally, more single-fiber pull out was observed within the bundle segments of fatigued specimens.  相似文献   
56.
Injection molded direct joining (IMDJ) is one of the metal-plastic direct joining processes and is based on a combination of a special surface treatment of a metal piece and an insert molding. This study employed a chemical processing as the special surface treatment to form nano-structures on the metal piece. We investigated relationship between joining strengths and molding conditions; we focused on pressure of a mold cavity and injection speed as molding conditions in this work. To evaluate the IMDJ samples processed under various molding conditions, we carried out tensile-shear tests. Then we compared the results of the tests to discuss how much each condition variation affected the joining strength. From the discussion, we found an interesting effect of the injection speed, which is unique to the IMDJ using a metal piece with nano-structures. The findings of this study will promote a better understanding of the IMDJ.  相似文献   
57.
In this study, an equal-atomic FeNiCoCu high entropy alloy (HEA) and a Ti and Al added (FeNiCoCu)86Ti7Al7 HEA were subjected for high pressure torsion (HPT) up to 10 rotations. Microstructure observation and mechanical properties test revealed that significant grain refinement as well as enhanced strength could be obtained in both HPT processed alloys. The HPT processed FeNiCoCu HEA alloy shows nanocrystalline structure consisting of FCC matrix (grain size ∼100 nm) and FeCo-riched BCC phase. The HPT processed (FeNiCoCu)86Ti7Al7 HEA alloy shows nanocrystalline structured FCC matrix (mean grain size ∼50 nm) and refined NiCoTiAl-riched particles (mean particle size ∼0.71 μm). The ultimate tensile strength of the HPT processed FeNiCoCu and (FeNiCoCu)86Ti7Al7 alloys are 1402 MPa and 1849 MPa, respectively. The microstructure evolution during HPT and strengthening mechanisms of the HPT processed specimens were discussed.  相似文献   
58.
Polylactic acid (PLA) based composite films were prepared by incorporating polyethylene glycol (PEG) and cinnamon oil (CIN) (25 and 50% w/w of PLA) via solution casting method. Morphological, structural, thermo-mechanical, spectral, and antibacterial properties of PLA/PEG/CIN films were investigated. Tensile strength (TS) and tensile modulus (TM) of the film decreased, while the elongation at break (EAB) increased by increasing CIN concentration. Using the principle of time-temperature superposition, the viscous modulus and the complex viscosity of composite films at selected temperatures and frequencies (time scales) were superimposed well in an extended frequency range. Thermal properties decreased substantially with incorporation of CIN. Significant changes in molecular organisation and intermolecular interactions between CIN and PLA/PEG matrix were observed through the FTIR spectroscopy. Scanning electron microscopic (SEM) revealed rough surfaces of the composite films. The effectiveness of composite films was tested against Listeria monocytogenes and Salmonella typhimurium inoculated in chicken samples, and it was found that the film containing 50% CIN showed an antibacterial activity during 16 days storage at refrigerated condition. The developed film has a potential for packaging of chicken samples with extended storage.  相似文献   
59.
The micromechanics models for composites usually underpredict the tensile strength of polymer nanocomposites. This paper establishes a simple model based on Kelly–Tyson theory for tensile strength of polymer/CNT nanocomposites assuming the effect of interphase between polymer and CNT. In addition, Pukanszky model is joined with the suggested model to calculate the interfacial shear strength (τ), interphase strength (σi) and critical length of CNT (Lc).The proposed approach is applied to calculate τ, σi and Lc for various samples from recent literature. It is revealed that the experimental data are well fitted to calculations by new model which confirm the important effect of interphase on the properties of nanocomposites. Moreover, the derived equations demonstrate that dissimilar correlations are found between τ and B (from Pukanszky model) as well as Lc and B. It is shown that a large B value obtained by strong interfacial adhesion between polymer and CNT is adequate to reduce Lc in polymer/CNT nanocomposites.  相似文献   
60.
In this study, the effects of a T4 heat treatment on the microstructure and tensile properties of an A380 aluminum alloy with and without lithium (Li) additions have been investigated. Microstructural examination was carried out using optical and scanning electron microscopy, image analysis, and X-ray diffraction (XRD) analysis methods. The results showed that when the T4 heat treatment was applied, spheroidized eutectic Si particles and fragmented β-phase particles were formed. The influence of the heat treatment on the aspect ratio and average length of Si and β phases in a non-modified alloy was more noticeable than in the Li-modified. Significant improvements in tensile properties were also observed in heat-treated samples. Additionally, a fractographical analysis showed that the fracture surfaces of the Li-modified specimens with and without heat treatment had more ductile dimple and fewer brittle cleavage surfaces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号